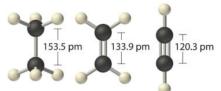

AceOrganicChem.com Elite

You can't fight organic chemistry, but you can ace it.

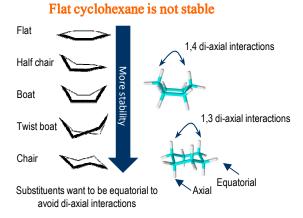
Basic Functional Groups

Nomenclature

1=Meth 2=Eth 3=Prop 4=But 5=Pent 6=Hex 7=Hept 8=Oct 9=Non 10=Dec


Nomenclature Steps(for alkanes):

- 1. Find the longest continuous carbon chain and name it.
- 2. Number the chain so that position # of the first substituent is smallest #.
- 3. Determine the name and position of each substituent.
- 4. Indicate the number of identical groups with a prefix


5. Place the position numbers and names of the substituents in alpha order before the chain name.

Which is it??	S _N 1	E1	S _N 2	E2
Reaction mechanism	2-step w/ a carbocation	2-step w/ a carbocation	Concerted	Concerted
Strength of nucleophile	Can be mediocre, must be non-basic	Can be mediocre, must be basic	Strong, non- basic, non-bulky	Strong AND basic
Leaving group ability	Must be great	Must be great	Can be mediocre	Can be mediocre
Solvent	Polar Protic	Polar Protic	Polar aprotic	Polar aprotic
Stereo-chemistry	gives (almost) totally racemic product,	Bulky groups will prefer opposite sides	Walden inversion	"H" must be able to go antiperiplanar

The hybridized carbon

Carbon	sp3	sp2	sp
Bond	Single	Double	Triple
Geometry	Tetrahedral	Trigonal	Linear
Bond angle	109.5°	120°	180°

Carbocation stability: $\begin{array}{cccc} H & CH_3 & CH_3 & CH_3 \\ H^{-} & H^{-} & H^{-} & H^{-} & H^{-} \\ H^{-} & H^{-} & H^{-} & CH_3 & H_3 \\ \end{array}$

Natural state of atoms, when uncharged:

C = Carbon: four bonds, no lone pairs

N = Nitrogen: three bonds, one lone pair

O = Oxygen: two bonds, two lone pairs

X = Halogens: one bond, three lone pair

H = Hydrogen: one bond, no lone pair

More stability

Carbon Configuration (R/S)

- 1. Label each of the four different substituents 1-4 with 1 being heaviest MW and 4 having lightest.
- 2. Rotate the carbon so that #4 is pointing away from you.
- 3. Move around the carbon from 1 to 2 to 3.
- 4. If you moved clockwise around the carbon, it is (R). If you moved counterclockwise, it is (S).

Some Organic I Basics – Need to know information