Organic Chemistry Help: Resonance

Hi Everybody–Resonance is one of those issues that you will have to deal with for both semester I & II organic chemistry.  It is much better to have a solid understanding of it now, rather than have to worry about it later.  The basic goal of resonance structures is to show that molecules can move electrons and charges onto different atoms on the molecule.  This makes the molecule generally more stable because the charge is now delocalized and not “forced” on an atom that does not want it.

 

Below are some handy rules of resonance.  If you learn these and think about them when tackling different resonance problems, you will be able to handle whatever is thrown at you.

 

1) Know each atom’s “natural state”.  You need to recognize what each atom generally looks like, in an uncharged state.  This will help you to construct the Lewis Dot structure on which you will base your resonance structures.  In most uncharged cases:

       – C has four bonds and no lone pairs

       – N has three bonds and one lone pair

       – Halogens (F, Cl, Br, I) have one bond and three lone pairs. 

       – O has two bonds and two lone pairs

       – H has one bond and no lone pairs

       – With the exception of H, everyone in group I & group II are only counterions (+1 or +2 and not involved in resonance).

Remember that halogens and hydrogens are always terminal, meaning that are at the end of the molecule and only have one bond, and therefore, they will not participate in resonance.

2) Atom positions will not change.  Once you have determined that an atom is bonded to another atom, that will not change in a resonance structure.  If they do change, it is no longer a resonance strucutre, but is now a constitutional isomer.

 

3) Check the structure you have created to make sure that it follows the octet rule.  This will become much easier once you have a better handle on the “natural state” of atoms.

 

4) When two or more resonance structures can be drawn, the one with the fewest total charges is the most stable.  In the example below, A is more stable than B.

 

 

5) When two or more resonance structures can be drawn, the more stable has the negative charge on the more electronegative atom.  In the example below, A is more stable than B.

 

6) In the end, each resonance structure should have the same overall charge and total number of electrons (bonds + lone pairs) as when you started.

Dr. Michael Pa got a bachelors degree in chemistry from Binghamton University, a masters degree in organic chemistry from the University of Arizona and a Ph.D. in organic chemistry from the University of Arizona. His research focus was on novel pain killers which were more potent than morphine but designed to have fewer side effects. There may even be a patent or two that came out of it. Prior to all of this, he was a chemist at Procter and Gamble. After all of that, he (briefly) worked as a post-doctoral assistant at Syracuse University, working on novel organic light-emitting diodes (OLEDs). In between, he did NOT compete at the 1996 Olympics, make the Atlanta Braves opening day roster, or become the head coach of the Indiana Pacers, as he had intended. #fail During this entire time, he always loved helping students, especially if they were struggling with organic chemistry. In 2006, Dr. Pa founded AceOrganicChem.com in order to make learning organic chemistry fast and easy. 14 years and about 60,000 students later we are still helping students to learn organic chemistry one reaction at a time at https://www.aceorganicchem.com

5 thoughts on “Organic Chemistry Help: Resonance”

  1. It has been often said and many times proven that nothing exists chemistry.Chemistry is biological and as such instinctive and very powerful. It is as strong and lasts as long as the elements of an affinity.

  2. Pingback: Lewis Structures for O-chem, Part 2 « reactions & distractions

Comments are closed.