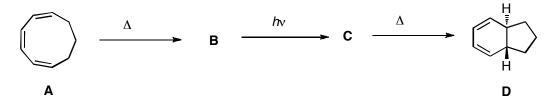
Chem 332 Exam 4 May 22, 2010 Professor Fox

100 points 180 minutes

Your Name\_\_\_\_\_



## 2 points each


1. Provide reagents for the following transformations. There is no limit to the number of carbons that your reagents may contain.

2. Circle the molecules that are aromatic. 2 points each



3. One of the steps in the following synthesis would not proceed in high yield. CIRCLE the problematic step, and describe the problem in the space below in 30 words or less

4. Upon heating, compound  $\bf A$  undergoes electrocyclization to isomeric compound  $\bf B$ . Photochemical electrocyclization reaction of compound  $\bf B$  produces isomer  $\bf C$ . Finally, thermolysis of  $\bf C$  produces isomeric compound  $\bf D$ .



- a. Provide structures for **B** and **C**, and arrow pushing mechanisms for the formation of **B**, **C** and **D**. (6 pts)
- b. Use molecular orbital theory to explain the stereoselectivity for the formation of **B**, **C** and **D** (12 pts)

4. (continued)

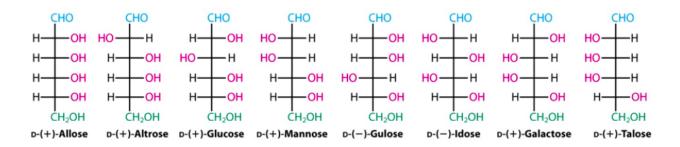
| Your Name     |  |  |  |
|---------------|--|--|--|
| I our Ivanic_ |  |  |  |

5. Provide a **stereoselective** synthesis starting **with benzene** and any other materials that contain **three carbons or less.** Any reagents that do not become incorporated into the product (e.g. PPh3) may contain more than three carbons

15 points

15 points

6. Provide a detailed arrow pushing mechanism.


$$\begin{array}{c|c} & \text{cat. Pd(0)} \\ \hline & & \\ & & \\ \hline \end{array}$$

## 7. Provide a detailed arrow pushing mechanism.

15 points

8. The <u>unnatural sugar</u> (L)-Altrose gives a diacid upon sequential Wohl degradation/HNO $_3$  oxidation. Circle the naturally occuring (D)-sugar(s) that give the same diacid upon sequential Wohl degradation/HNO $_3$  oxidation.

8 points



9. Identify each of the following pairs as being identical, meso, enantiomers, anomers, non-anomeric diasteromers. If none of these relationships apply, then indicate that the compounds are not stereoisomers.

(a)

identical (but not meso)

meso

enantiomers

anomers

diastereomers (but not anomers)

these compounds are not stereoisomers

(b) HO—H H—OH H—OH

identical (but not meso)

meso

enantiomers

anomers

diastereomers (but not anomers)

these compounds are not stereoisomers

(c) Leu-Tyr-Phe

$$H_3N$$
  $H_3N$   $H_3N$ 

identical (but not meso)

meso

enantiomers

anomers

diastereomers (but not anomers)

these compounds are not stereoisomers

NOTE: the structures of the amino acids are on the following page

## TABLE 26-1 Natural (25)-Amino Acids COOH H<sub>2</sub>N H

| R                                                 | Name                       | Three-letter code | One-letter<br>code | p $K_{\rm a}$ of $\alpha$ -COOH | $pK_a$ of $\alpha$ - $^+NH_3$ | pK <sub>a</sub> of acidic function in R | Isoelectric point, p <i>I</i> |
|---------------------------------------------------|----------------------------|-------------------|--------------------|---------------------------------|-------------------------------|-----------------------------------------|-------------------------------|
| Н                                                 | Glycine                    | Gly               | G                  | 2.3                             | 9.6                           | _                                       | 6.0                           |
| Alkyl group                                       |                            |                   |                    |                                 |                               |                                         |                               |
| CH <sub>3</sub>                                   | Alanine                    | Ala               | A                  | 2.3                             | 9.7                           | _                                       | 6.0                           |
| CH(CH <sub>3</sub> ) <sub>2</sub>                 | Valine <sup>a</sup>        | Val               | V                  | 2.3                             | 9.6                           | _                                       | 6.0                           |
| CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | Leucine <sup>a</sup>       | Leu               | L                  | 2.4                             | 9.6                           | _                                       | 6.0                           |
| CHCH <sub>2</sub> CH <sub>3</sub> (S)             | Isoleucine <sup>a</sup>    | Ile               | I                  | 2.4                             | 9.6                           | _                                       | 6.0                           |
| CH <sub>3</sub> H <sub>2</sub> C                  | Phenylalanine <sup>a</sup> | Phe               | F                  | 1.8                             | 9.1                           | _                                       | 5.5                           |
| $HN$ $H$ $CH_2$                                   | Proline                    | Pro               | P                  | 2.0                             | 10.6                          | _                                       | 6.3                           |

TABLE 26-1 Natural (25)-Amino Acids

$$H_2N$$
  $H$ 

| R                                                  | Name                   | Three-letter code | One-letter<br>code | $pK_a$ of $\alpha$ -COOH | $pK_a$ of $\alpha$ - $^+NH_3$ | pK <sub>a</sub> of acidic function in R | Isoelectric<br>point, p <i>I</i> |
|----------------------------------------------------|------------------------|-------------------|--------------------|--------------------------|-------------------------------|-----------------------------------------|----------------------------------|
| Hydroxy containing                                 |                        |                   |                    |                          |                               |                                         |                                  |
| CH <sub>2</sub> OH                                 | Serine                 | Ser               | S                  | 2.2                      | 9.2                           | _                                       | 5.7                              |
| CHOH (R)                                           | Threonine <sup>a</sup> | Thr               | T                  | 2.1                      | 9.1                           | _                                       | 5.6                              |
| CH <sub>3</sub>                                    |                        |                   |                    |                          |                               |                                         |                                  |
| H <sub>2</sub> C —OH                               | Tyrosine               | Tyr               | Y                  | 2.2                      | 9.1                           | 10.1                                    | 5.7                              |
| Amino containing                                   |                        |                   |                    |                          |                               |                                         |                                  |
| O                                                  |                        |                   |                    |                          |                               |                                         |                                  |
| CH <sub>2</sub> CNH <sub>2</sub>                   | Asparagine             | Asn               | N                  | 2.0                      | 8.8                           | _                                       | 5.4                              |
| O                                                  |                        |                   |                    |                          |                               |                                         |                                  |
| CH <sub>2</sub> CH <sub>2</sub> CNH <sub>2</sub>   | Glutamine              | Gln               | Q                  | 2.2                      | 9.1                           | _                                       | 5.7                              |
| (CH <sub>2</sub> ) <sub>4</sub> NH <sub>2</sub>    | Lysine <sup>a</sup>    | Lys               | K                  | 2.2                      | 9.0                           | $10.5^{c}$                              | 9.7                              |
| NH                                                 |                        |                   |                    |                          |                               |                                         |                                  |
| (CH <sub>2</sub> ) <sub>3</sub> NHCNH <sub>2</sub> | Arginine <sup>a</sup>  | Arg               | R                  | 2.2                      | 9.0                           | 12.5 <sup>c</sup>                       | 10.8<br>Continued                |

## TABLE 26-1 Natural (25)-Amino Acids (continued)

| R                                                                                        | Name                    | Three-letter code | One-letter code | $pK_a$ of $\alpha$ -COOH | $pK_a$ of $\alpha$ - $^+NH_3$ | $pK_a$ of acidic function in R | Isoelectri<br>point, p <i>I</i> |
|------------------------------------------------------------------------------------------|-------------------------|-------------------|-----------------|--------------------------|-------------------------------|--------------------------------|---------------------------------|
| Amino containing (c                                                                      | continued)              |                   |                 |                          |                               |                                |                                 |
| H <sub>2</sub> C                                                                         | Tryptophan <sup>a</sup> | Trp               | W               | 2.8                      | 9.4                           | _                              | 5.9                             |
| H <sub>2</sub> C NH                                                                      | Histidine <sup>a</sup>  | His               | Н               | 1.8                      | 9.2                           | 6.1 <sup>c</sup>               | 7.6                             |
| Mercapto or sulfide                                                                      | containing              |                   |                 |                          |                               |                                |                                 |
| CH <sub>2</sub> SH                                                                       | Cysteine <sup>d</sup>   | Cys               | C               | 2.0                      | 10.3                          | 8.2                            | 5.1                             |
| CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>                                         | Methionine <sup>a</sup> | Met               | M               | 2.3                      | 9.2                           | _                              | 5.7                             |
| Carboxy containing                                                                       |                         |                   |                 |                          |                               |                                |                                 |
| CH <sub>2</sub> COOH                                                                     | Aspartic acid           | Asp               | D               | 1.9                      | 9.6                           | 3.7                            | 2.8                             |
| CH <sub>2</sub> CH <sub>2</sub> COOH                                                     | Glutamic acid           | Glu               | Е               | 2.2                      | 9.7                           | 4.3                            | 3.2                             |
| <sup>a</sup> Essential amino acids. <sup>c</sup><br>CH <sub>2</sub> SH substituent has h |                         |                   | The stereocent  | er is R becaus           | e the                         |                                |                                 |