Student Name (first, last): Student Number:	
1. (15 points) Check the correct statements only and make no other marks:	
 () The α hydrogen is less acidic in acetaldehyde than in methyl acetate. () The Hell-Volhard-Zelinsky α-bromination of carboxylic acids is done with phosphorus. () Halogenation of an aldehyde or a ketone in acidic solution usually results in one hydrogen with a halogen. () Aldol reaction of acetaldehyde in aqueous base produces 3-hydroxybutana () Aldol condensation cannot be catalyzed by acid. () Claisen condensation of ethyl acetate in the presence of EtONa followed by affords ethyl acetoacetate, CH₃COCH₂COOEt. () Methanethiol adds to acrylonitrile (CH₂=CHCN) under basic conditions 3-(methylthio)propanenitrile. () α,β-Unsaturated carbonyl compounds undergo carbonyl addition with organ and conjugate addition with lithium organocuprates. () p-Nitroaniline is more basic than aniline. () Cyclohexylamine is less basic than aniline. () The benzenediazonium cation reacts with potassium iodide to yield iodobe () Diazotization of an aromatic amine with nitrous acid followed by reaction produce an azo compound. () Curtius rearrangement of an acyl azide RCON₃ yields an alkyl isocyanate F the stereochemistry on R has been preserved. 	the replacement of l. y acidic workup s to produce anolithium reagents nzene. with aniline will

dimethylamine and base.

2. (20 pts) Write a plausible mechanism for the haloform reaction of tert.-butyl methyl ketone with excess Br₂ and NaOH in a water/dioxane mixture (include all steps and intermediates and use curved arrows to indicate electron movement in each step).

3. (30 pts) Propose a reaction sequence for the synthesis of 1,3,5-tribromobenzene from benzene and inorganic reagents. Show all steps and all reagents (no mechanisms, no curved arrows, no solvents).

- 4. (20 pts) Write the structures of the principal organic product in the following reactions. You do not need to show solvents, mechanisms, or curved arrows.
- (a) PhCH₂COOEt + EtO-CO-OEt; 1. heat with 1 equiv. of EtONa, 2. $H_3O^+ \rightarrow$

(b) $(CH_3)_3CCH_2CONH_2 + Br_2 + NaOH/H_2O \rightarrow$

5. (15 points) Explain the principle of phase-transfer catalysis in 50 words or fewer and illustrate it on a reaction of octyl bromide with potassium cyanide.