Chemistry 3351 Organic Chemistry/Final Exam Monday: Dec. 17th from **1:30 pm → 4:00pm**

Name:	(please print, 1 pt)

Page	Possible Points	Score
1	1	
2	9	
3	10	
4	12	
5	14	
6	14	
7	10	
8	15	
9	10	
10	10	
11	10	
12	9	
13	16	
14	10	
TOTAL	150	

- 1. (9 pts) Clickers in Action:
 - i) Your assignment is to convert (1R, 2S)-2-methylcyclopentanol to (1R, 2S)-1-cyano-2-methylcyclopentane. The reagents provided are:

NaCN, acetone
 TsCl, pyridine
 NaI, acetone

Select the best sequence of reactions, starting with substrate, to obtain the highest yield of product.

(A) 1 (B) 2, 1 (C) 2, 3 (D) 2, 3, 1

ii) Arrange the acids NH₃, C₂H₅SH, C₂H₅OH, CH₃SO₃H, and HCO₂H in order of increasing strength.

iii) Which of these reactions involves a free radical mechanism?

- (I) Halogenation of alkanes in presence of light
- (II) Addition of HBr to alkenes
- (III) Addition of HBr to alkenes in the presence of ROOR
- (A) I and II
- (B) I and III
- (C) II and III
- (D) I, II and III

2. (10 pts) Arrange the compounds within each of the following sets in order of increasing boiling point, and give your reasoning (concisely).

(a) 1-pentanol, 2-methyl-1-butanol

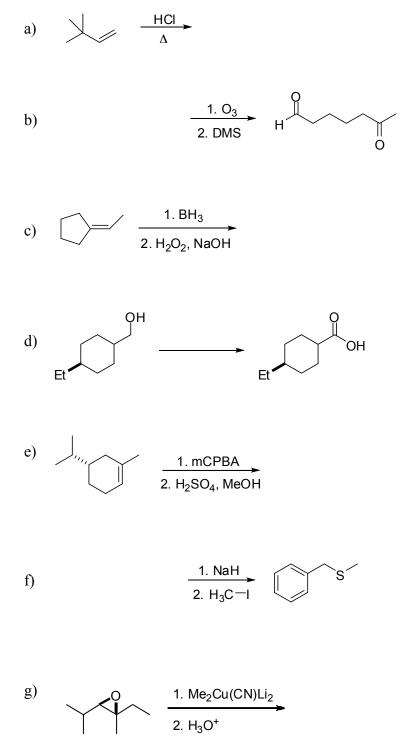
(b) 1-hexanol, 2-pentanol, tert-butyl alcohol

(c) 1-hexanol, 1-hexene, 1-chloropentane

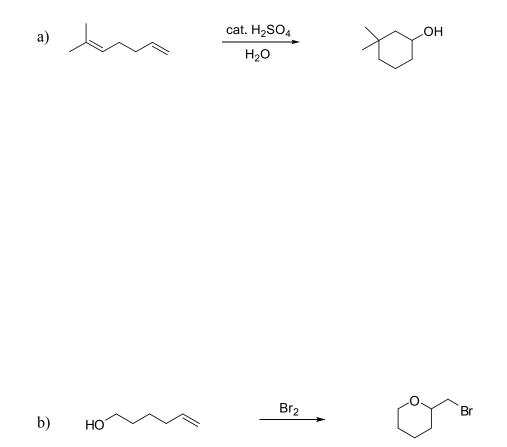
(d) diethyl ether, propane, 1,2-propanediol

(e) cyclooctane, chlorocyclobutane, cyclobutane

a) Give the product X expected when methylenecyclobutane undergoes acid-catalyzed hydration.


$$\bigcirc$$
 $H_2 \xrightarrow{1 \text{ M HNO}_3} X$

b) The rate-limiting step is protonation of the double bond; use H_3O^+ as the acid catalyst. Draw the structure of the reactive intermediate formed in the rate-limiting step.

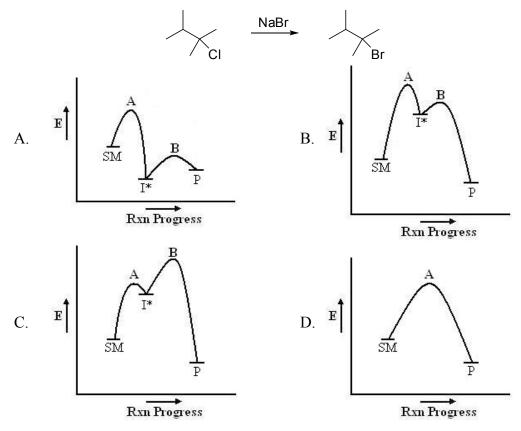

c) Draw the transition state for the rate-limiting step.

d) What is the rate-limiting step for dehydration of X (the reverse of the reaction shown above)?

4. (14 pts) Provide the missing products, reactants, or reaction conditions for the following reactions. For reactions that produce stereoisomers, draw ALL possible stereoisomers and INDICATE if they would be formed in equal or unequal amounts.

5. (14 pts) Provide full and complete mechanisms for the reactions below. Be sure to include every intermediate and all arrows required for each step of the reaction.

6. (10 pts). In the laboratory of the firm "Halides 'R' Us", compound A has been found in a vial labeled only "achiral alkyl halide $C_{10}H_{17}Br$ ". The management feels that the compound might be useful as a pesticide, but they need to know its structure. You have been called in as a consultant at a handsome fee.


Compound **A**, when treated with KOH in warm ethanol, yields two compounds (**B** and **C**), each with the molecular formula $C_{10}H_{16}$. Compound **A** rapidly reacts in aqueous ethanol to give an acidic solution, which, in turn, gives a precipitate of AgBr when tested with AgNO₃ solution. Ozonolysis of **A** followed by treatment with (CH₃)₂S affords (CH₃)₂C=O (acetone) as one of the products plus an unidentified halogen-containing material. Catalytic hydrogenation of either **B** or **C** gives a mixture of both *trans*- and *cis*-1-isopropyl-4-methylcyclohexane. Compound **A** reacts with one equivalent of Br₂ to give a mixture of two separable compounds, **D** and **E**, both of which are achiral compounds. Finally, ozonolysis of compound B followed by treatment with aqueous H₂O₂ gives acetone and the diketone **F**.

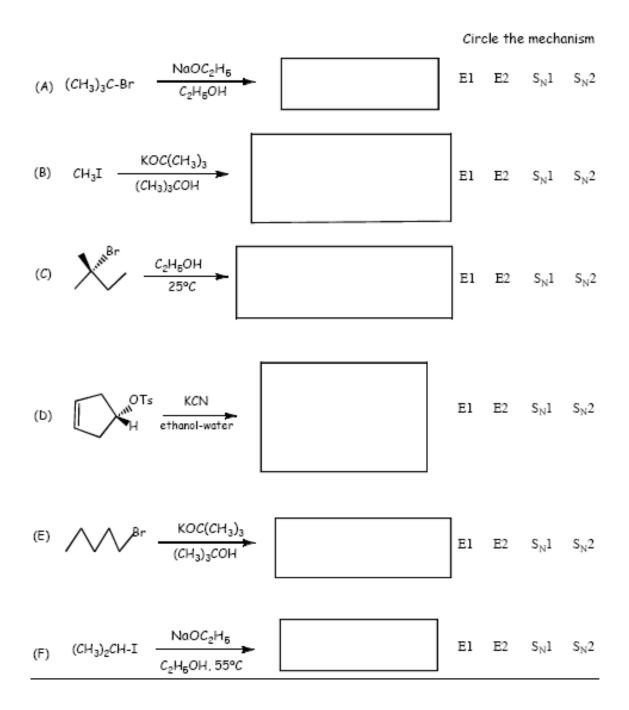
Propose structures for compounds A through E that best fit the data (and collect your fee).

7. (15 pts)

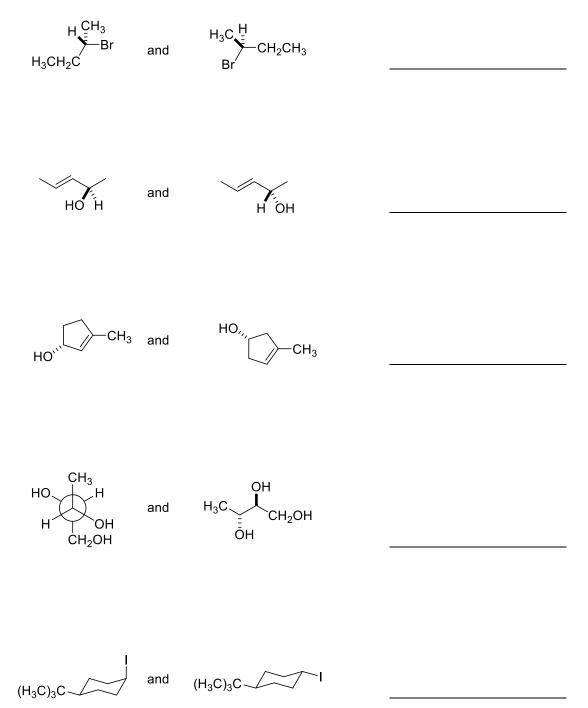
a) Which energy diagram best represents the reaction shown below? Please circle your answer. (SM: Starting material, I*: Intermediate, P: Product)

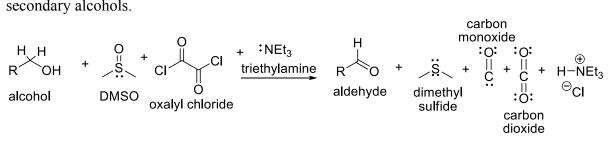
b) In regards to your answer for part a), which step is rate limiting? Please circle your answer.

i. Step A ii. Step B iii. Neither Step A nor Step B


c) In regards to the reaction above, which of the following compounds is the nucleophile? Please circle your answer.

b. NaBr


c. NaCl

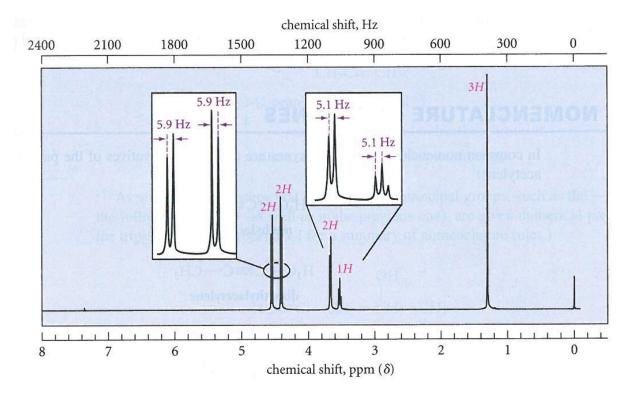

8. (12 pts) Draw the structure(s) of the major product(s) of each reaction. Be sure to include stereochemistry when appropriate. Circle the mechanism that accounts for the formation of each major product:

9. (10 pts) Draw every stereoisomer for 1-bromo-2-chloro-1,2-difluorocyclopentane. Use wedgeand-dash bonds for the substitutent groups, and be sure that they are drawn on the outside of the ring, adjacent to each other. 10. (10 pts) Identify the relationship between the following pairs. Are they identical, constitutional isomers, enantiomers, or diastereomers?

11. (9 pts) The *Swern oxidation*, shown below is a very mild procedure for oxidizing primary and secondary alcohols.

(a) How many electrons are involved in this oxidation from the alcohol to the aldehyde? Explain.

(b) What is the oxidizing agent?

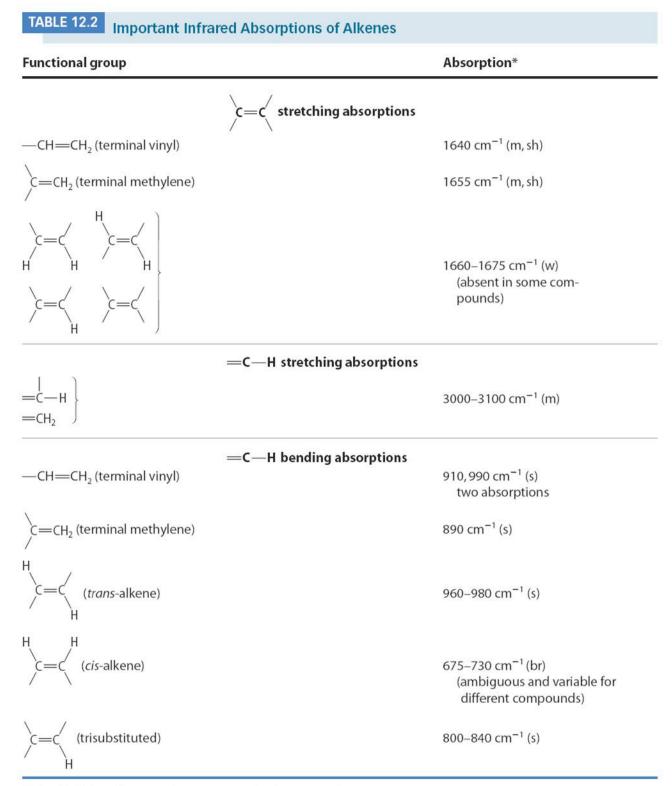

(c) The following compound is a key intermediate in this oxidation. Give a curved-arrow mechanism for the reaction of this intermediate with triethylamine as the base to give the product aldehyde (RCHO).

12. (16 pts) Explain how you could differentiate between the compounds in each of the following pairs by using simple physical or chemical tests that give readily observable results, such as obvious solubility differences, color changes, evolution of gases, or formation of precipitates.

(a) 3-ethoxypropene and 1-ethoxypropane

(b) 1-pentanol and 1-methoxybutane

13. (10 pts) A compound X with the molecular formula $C_5H_{10}O_2$ has an IR spectrum with strong absorption in the 1000-1100 cm⁻¹ region; very strong, broad absorption in the 3000-3600 cm⁻¹ region; and no absorption in the 1600-1700 cm⁻¹ region. The proton NMR spectrum of X is given below. When the sample is shaken with D₂O, the triplet at δ 3.5 disappears the doublet at δ 3.7 becomes a singlet. Propose a structure for this compound, and explain your reasoning.


-	15	-

hydrogen	1			100	2570	5	1580		1050	20	12.20	100	0.01	205	8.50	7070		helium 2
ΙĤ.																		He
1.0079																		4.0026
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												В	С	Ν	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
0.000															19941-9			
Na	Mg												AI	Si	Ρ	S	CI	Ar
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938 teabratium	55.845	58,933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
39.098 rubidium 37	40.078 strontium 38		44.956 yttrium 39	zirconium	niobium	molybdenum	technetium	55.845 ruthenium 44	58,933 rhodium 45	58.693 palladium 46	63.546 silver 47	65.39 cadmium 48	69.723 Indium 49		74.922 antimony	78.96 tellurium	79.904 lodine 53	xenon
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	72.61 tin 50	74.922 antimony 51	78.96 tellurium 52	iodine	xenon 54
37 Rb	strontium		yttrium	^{zirconium} 40 Zr	^{nloblum} 41 Nb	molybdenum	43 TC	ruthenium	45 Rh	^{palladium} 46 Pd	silver	cadmium	indium	72.61 tin 50 Sn	74.922 antimony 51 Sb	78.96 tellurium 52 Te	iodine 53	54 Xe
rubidium 37 Rb 85.468 caesium	strontium 38 Sr 87.62 barium		yttrium 39 Y 88.906 Iutetium	40 Zr 91.224 hafnium	nlobium 41 Nb 92.906 tantalum	42 Mo 95.94 tungsten	43 TC [98] rhenium	ruthenium 44 Ru 101.07 osmium	rhodium 45 Rh 102.91 Iridium	palladium 46 Pd 106.42 platinum	47 47 Ag 107.87 gold	48 Cd 112.41 mercury	indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead	74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium	lodine 53 126.90 astatine	xenon 54 Xe 131.29 radon
rubidium 37 Rb 85.468 caesium 55	strontium 38 Sr 87.62 barium 56	57-70	yttrium 39 Y 88.906 Iutetium 71	2irconium 40 Zr 91.224 hafnium 72	niobium 41 Nb 92.906 tantalum 73	Molybdenum 42 Mo 95.94 tungsten 74	43 TC [98] rhenlum 75	ruthenium 44 Ru 101.07 osmium 76	rhodium 45 Rh 102.91 Iridium 77	palladium 46 Pd 106.42 platinum 78	silver 47 Ag 107.87 gold 79	cadmium 48 Cd 112.41 mercury 80	indium 49 In 114.82	72.61 tin 50 Sn 118.71 lead 82	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	iodine 53 126.90 astatine 85	xenon 54 Xe 131.29 radon 86
rubidium 37 Rb 85.468 caesium	strontium 38 Sr 87.62 barium	57-70 X	yttrium 39 Y 88.906 Iutetium	40 Zr 91.224 hafnium	nlobium 41 Nb 92.906 tantalum	42 Mo 95.94 tungsten	43 TC [98] rhenium	ruthenium 44 Ru 101.07 osmium	rhodium 45 Rh 102.91 Iridium	palladium 46 Pd 106.42 platinum	47 47 Ag 107.87 gold	cadmium 48 Cd 112.41 mercury 80	indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 Jead	74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium 84 PO	lodine 53 126.90 astatine	xenon 54 Xe 131.29 radon
rubidium 37 Rb 85.468 caesium 55 CS 132.91	strontium 38 Sr 87.62 barium 56 Ba 137.33	1940.00 202022	yttrium 39 Y 88.906 Iutetium 71 Luu 174.97	Zirconium 40 Zr 91.224 hafnium 72 Hf 178.49	niobium 41 Nb 92,906 tantalum 73 Ta 180,95	Molybdenum 42 Mo 95,94 tungsten 74 W 183,84	186.21	ruthenium 44 Ru 101.07 osmium 76 OS 190.23	rhodium 45 Rh 102.91 Iridium 77 Ir 192.22	palladium 46 Pd 106.42 platinum 78 Pt 195.08	silver 47 Ag 107.87 gold 79 Au 196.97	cadmium 48 Cd 112.41 mercury 80 Hg 200.59	indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	iodine 53 126.90 astatine 85	xenon 54 Xe 131.29 radon 86
rubidium 37 Rb 85.468 caesium 55 Cs	strontium 38 Sr 87.62 barium 56 Ba	1940.00 202022	yttrium 39 Y 88.906 Iutetium 71 Lu	zirconium 40 Zr 91.224 hafnium 72 Hf	niobium 41 Nb 92.906 tantalum 73 Ta	Molybdenum 42 Mo 95,94 tungsten 74 W	12 43 TC [98] rhenlum 75 Re	ruthenium 44 Ru 101.07 osmium 76 OS	rhodium 45 Rh 102.91 iridium 77 Ir	palladium 46 Pd 106.42 platinum 78 Pt	47 Ag 107.87 gold 79 Au	Cadmium 48 Cd 112.41 mercury 80 Hg	Indium 49 In 114.82 thallium 81 TI	72.61 tin 50 Sn 118.71 lead 82 Pb	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 PO	lodine 53 1 126.90 astatine 85 At	xenon 54 Xe 131.29 radon 86 Rn
rubidium 37 Rb 85.468 caesium 55 CS 132.91 francium 87	strontium 38 Sr 87.62 barium 56 Ba 137.33 radium 88	★ 89-102	yttrium 39 Y 88,906 Iutetium 71 Luu 174.97 Iawrencium 103	zirconium 40 Zr 91,224 hatnium 72 Hff 178,49 rutherfordium 104	niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborglum 106	technetium 43 TC 98 rhenium 75 Re 186.21 bohrium 107	ruthenium 44 Ruu 101.07 osmium 76 OS 190.23 hassium 108	rhodium 45 Rh 102.91 Iridium 77 Ir 192.22 meitnerium 109	palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	silver 47 Agg 107.87 gold 79 Au 196.97 unununlum 111	cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	Indium 49 In 114.82 thallium 81 TI	72.61 lin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 PO	lodine 53 1 126.90 astatine 85 At	xenon 54 Xe 131.29 radon 86 Rn
rubidium 37 Rb 85.468 caesium 55 CS 132.91 francium	strontium 38 87.62 barium 56 Ba 137.33 radium	*	yttrium 39 Y 88,906 lutetium 71 Lu 174.97 lawrencium	zirconium 40 Zr 91.224 hafnium 72 Hff 178.49 rutherfordium	niobium 41 Nb 92,906 tantalum 73 Ta 180,95 dubnium	motybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborglum	43 TC 98] rhenium 75 Re 186.21 bohrlum	ruthenium 44 Ruu 101.07 osmium 76 OS 190.23 hassium	rhodium 45 Rh 102.91 Iridium 77 Ir 192.22 meitnerium	palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	silver 47 Ag 107.87 gold 79 Au 196.97 ununnium	cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	Indium 49 In 114.82 thallium 81 TI	72.61 lin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 PO	lodine 53 1 126.90 astatine 85 At	xenon 54 Xe 131.29 radon 86 Rn

Chemical shift, ppm	Group	Chemical shift, ppm
0.7–1.5	о сн	9-11
4.6-5.7	O —C—N—H	7.5–9.5
varies with solvent and with acidity of O—H		0.5-1.5
1.7–2.5		
6.5-8.5	NH-	2.5-3.5
	0.7–1.5 4.6–5.7 varies with solvent and with acidity of O—H 1.7–2.5	0.7-1.5 $-C-H$ 0 $-C-H$ 0 $-C-H$ 0 $-C-H$ 0 $-C-H$ $-C-H$ $1.7-2.5$ $-C-NH-$

TABLE 12.1 Regions of the Infrared Spectrum

avenumber range, cm ⁻¹	Type of absorptions	Name of region
3400-2800	O—H, N—H, C—H stretching	
2250–2100	C≡N, C≡C stretching }	Functional group
1850–1600	C=O, C=N, C=C stretching	
1600–1000	C—C, C—O, C—N stretching; } various bending absorptions ∫	Fingerprint
1000–600	C—H bending	C—H bending

*Intensity designations: s = strong; m = moderate; w = weak Shape designations: sh = sharp (narrow); br = broad (wide)