

Organic Chemistry: Chem 210

Practice Exam 3A

There are **28** questions on this exam. Check that you have done all of the problems and filled in the first **28** bubbles on the scantron. Most questions are worth 4 points; there are several two-point questions clearly labeled in the text. The maximum score on this exam is 100 points.

Instructions

Answer sheet

- 1) On the scantron, you need to clearly fill:
 - your name and your student number,
 - section number: (it is 001)
 - **test form** (white = test form A; yellow = test form B).
- 2) Use a #2 pencil

Exam policy

- 1) No electronic devices of any kind, such as calculators, cell phones, or even more advanced digital watches, are allowed. Possession of such devices during the exam, whether in use or not, is grounds for awarding a zero on the exam.
- 2) Molecular models are allowed (no instruction pages are permitted, however).
- 3) There are some blank pages at the end of the test that can be used as scratch paper.
- 4) Relevant tables, including the periodic table, are attached at the end of this exam.
- 5) Numerical values given in one question apply only to that question, and should not be used in other questions, unless there is a specific instruction to do so. If necessary, the values from the provided tables should be used, even if they differ from values that you may remember from different sources.
- 6) The exam results are based strictly on scantron's marks. No extraneous information is used to adjust the scores. Mark your choices with extra care.
- 7) Feel free to take this copy of the exam with you. The answer key will be posted on the web after the exam (under "News").

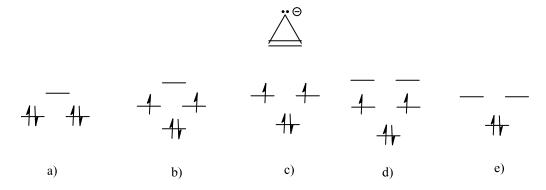
Hints

- 1) As you read the question, underline or circle key words to highlight them for yourself.
- 2) Questions have only one correct answer, unless indicated otherwise. No partial credit will be given.
- 3) There is no penalty for guessing.

- **Notes:** I. When listing reagents, a slash (/) is used between reagents that are employed simultaneously, and a semicolon (;) is used between reagents that are employed in a stepwise fashion.
 - II. The stereochemistry conventions are illustrated below:

No stereochemistry shown (all stereoisomers possible)

Absolute stereochemistry shown



Relative stereochemistry shown (racemic mixture)

Absolute stereochemistry on one center, unspecified stereochemistry on the other

- III. Abbreviations: Me = methyl, Et = ethyl, Pr = propyl, Bu = butyl, Pe = pentyl, Ph = phenyl (i.e. benzene as a substituent), AcO = acetate (H_3CCOO), MCPBA = m-chloroperbenzoic acid., TosO = TsO = tosylate
- 1. (4 pts) Radicals can be compared according to their selectivity in hydrogen abstractions based on the reactivity-selectivity principle. Which of the following radicals would be expected to have selectivity very similar to that of the H· radical?
 - a) Cl·
- b) F·
- c) HO.
- d) Br·
- e) I·
- 2. (4 pts) Which of the following π MO energy diagrams corresponds to the cyclopropenyl anion?

3. (4 pts) Which of the following is the best characterization of the cyclopentadienyl cation?

- a) antiaromatic
- b) non-aromatic
- c) carbocatatonic
- d) aromatic
- e) hyperconjugated

a) A

4. (4 pts) Which of the following is (are) the product(s) of the reaction shown below?

Br
$$CH_3$$
 CH_3 CH_3

5. (4 pts) How many **stereoisomers** of the product will form in this reaction?

a) 1 b) 2 c) 3 d) 4 e) 5
$$\frac{1. \text{ OsO}_4}{2. \text{ NaHSO}_3}$$

6. (4 pts) Which of the reagents shown below would accomplish the following transformations?

$$\begin{array}{c|c}
Br & 1. A \\
\hline
2. B
\end{array}$$

A B

a) H₃O⁺ BH₃-THF;H₂O₂/NaOH
b) NaOH BH₃-THF;H₂O₂/NaOH
c) HBr in ether Hg(OAc)₂/H₂O; NaBH₄
d) NaNH₂ Hg(OAc)₂/H₂O; NaBH₄
e) H₂/Pd/C NBS/DMSO/H₂O

7. (4 pts) Surprisingly, the reaction shown below goes through a bromonium ion. What is (are) the major product(s) of this reaction?

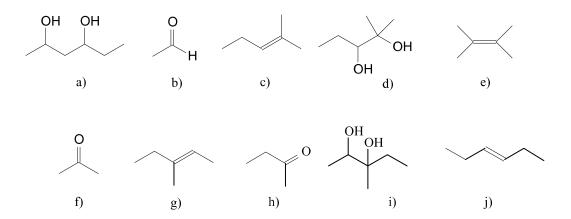
- A: trans-1,3-dibromocyclohexane
- **B**: *cis*-1,3-dibromocyclohexane
- C: trans-1,2-dibromocyclohexane
- **D**: *cis*-1,2-dibromocyclohexane
- a) **A** b) **B**
- c) **C**
- d) **D**
- e) A and B
- f) C and D
- g) A and C
- h) B and D
- **8-10**. (2 pts each) Here is a retro-synthetic analysis for the preparation of propanal from 3-hexyne. What are the most appropriate reagents to accomplish each step of the **synthesis** of propanal?

- a) Li/liquid NH₃
- b) BH₃-THF; H₂O₂/NaOH
- c) Hg(OAc)₂/H₂O; NaBH₄
- d) OsO₄;NaHSO₃

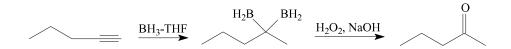
- e) Br₂/AcOH; NaNH₂
- f) O₃; Zn/AcOH
- g) KMnO₄/H⁺

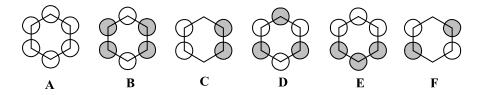
h) H₃O⁺

- i) H₂/Lindlar
- j) HIO₄/THF/H₂O
- 11. (4 pts) Which of the following compounds was the starting material for the oxidation shown below?


12. (4 pts) How is the following transformation best carried out?

- a) BH₃-THF; H₂O₂/NaOH
- d) OsO₄; NaHSO₃
- b) H₂SO₄/H₂O
- c) HgSO₄/H₂SO₄/H₂O
- e) O₃; Zn/AcOH f) HIO₄/H₂O/THF


13. (4 pts) Carbocation A can be an intermediate in many reactions studied in Chem 210. Which of the following reactions does not involve A as an intermediate?


- a) electrophilic addition of HBr to 2-butyne
- b) electrophilic addition of HCl to 1,2-butadiene
- c) electrophilic addition of HI to 1,3-butadiene
- d) rearrangement of 3-bromo-1-butene (the kinetic product) to 1-bromo-2-butene (the thermodynamic product)
- e) reaction of 3-hydroxy-1-butene with H₂SO₄ to yield 1,3-butadiene
- **14-16**. (2 pts each) An unknown hydrocarbon **A**, with formula C₆H₁₂, reacts with 1 molar equivalent of H₂ over a Pd catalyst. Hydrocarbon **A** also reacts with OsO₄ to give a diol, **B**. When oxidized with KMnO₄ in acidic solution, **A** gives 2 fragments. One fragment is propanoic acid, CH₃CH₂COOH, and the other is a ketone, **C**. From the structures (a)-(j) below, select the correct answers for questions **14-16**.
 - **14**. What is the structure of **A**?
 - 15. What is the structure of **B**?
 - **16**. What is the structure of **C**?

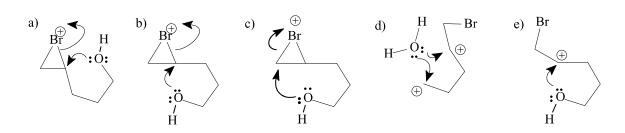
17. (4 pts) Consider the following synthesis. What is **wrong** with these transformations?

- a) BH₃ in THF is actually unreactive toward alkynes.
- b) BH₃ should add to adjacent carbons, rather than the same carbon.
- c) The oxygen in THF is responsible for oxidation; H₂O₂ and NaOH are not required.
- d) Borane can be used as an electrophile only with non-terminal alkynes.
- e) The borane addition follows regiochemistry opposite to that shown.
- 18. (4 pts) All six π MOs of benzene are shown below in a random order, in a view from the top (i.e. only top lobes of p orbitals on carbon atoms are visible). Which of the following electronic transitions will correspond to the absorption band with the shortest wavelength?

- a) $\mathbf{E} \to \mathbf{F}$
- b) $A \rightarrow B$
- c) $\mathbf{E} \rightarrow \mathbf{I}$
- d) $\mathbf{C} \rightarrow \mathbf{F}$
- e) $\mathbf{C} \rightarrow \mathbf{I}$
- 19. (4 pts) What is the absolute configuration of the stereogenic centers in the product(s) of the following reaction?

$$CH_3$$
 $+$ Br_2 \longrightarrow 1,2-dibromo-3-methylcyclohexane

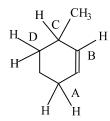
- a) 1*R*, 2*R*, 3*R*
- b) 1S, 2S, 3S
- c) 1*R*, 2*S*, 3*R*
- d) 1R, 2R, 3S
- e) 1*R*, 2*S*, 3*S*


- f) 1S, 2R, 3R
- g) 1S, 2S, 3R
- h) 1R, 2R, 3R and 1S, 2S, 3R
- i) 1R, 2S, 3R and 1S, 2R, 3R
- **20**. (4 pts) In which of the following **solvents** is it possible to create acetylide anions?
 - a) AcOH
- b) H₂O
- c) H₃COH
- d) $(i-Pr)_2NH$
- e) t-BuOH
- **21**. (4 pts) (*R*)-2-fluorobutane undergoes free-radical chlorination with Cl₂. Including **stereoisomers**, how many monochlorinated substitution products will form?
 - a) 3
- b) 4
- c) 5
- d) 6
- e) 7
- f) 8

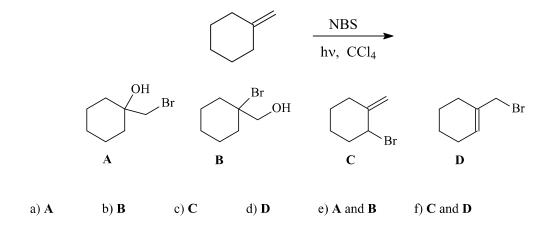
22. (4 pts) The following transformation is carried out in three steps. What are the appropriate reagents for the **first** (I) step?

- a) H₂/Lindlar catalyst
- b) NaNH₂/NH₃ (liquid); CH₃CH₂Br
- c) O₃; Zn/AcOH
- d) KMnO₄/NaOH

- e) HCCH/NaNH₂/THF/CH₃I
- f) H₂/Pd/C
- g) Li/NH₃ (liquid)
- h) NBS/DMSO/H₂O
- **23**. (4 pts) Consider the following transformation in which a cyclic bromoether is formed, rather than the expected bromohydrin. Which of the electron-pushing scheme **best** represents the mechanism of this reaction?

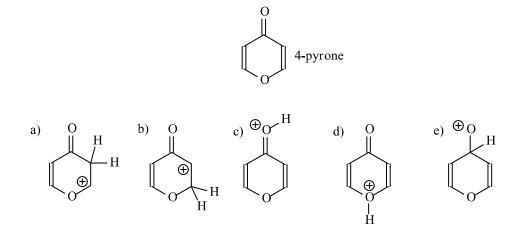

$$OH \xrightarrow{Br_2, H_2O} ? \xrightarrow{-HBr} O$$

24. (4 pts) Assuming that only monosubstitution products are formed in the reaction shown below, what would be the expected ratio of 2° to 3° chlorides?


25. (4 pts) In the molecule shown below selected C-H bonds are labeled with capital letters. Arrange these bonds according to the difficulty with which they would be broken in radical-forming reactions, starting with the strongest.

- a) B > D > A > C
- b) D > A > C > B
- $c) \quad A > D > C > B$
- d) B > C > A > D

- e) D>B>A>C
- f) C > B > A > D
- g) A > C > B > D
- h) C > A > D > B


26. (4 pts) What is(are) the product(s) of the following reaction?

27. (4 pts) Consider only the following two major products of the addition reaction shown below. Which statement is true about this reaction?

- a) The major product formed under thermodynamic control is 4-bromo-4-methyl-2-pentene.
- b) The major product formed under kinetic control is 4-bromo-2-methyl-2-pentene.
- c) The major product formed under thermodynamic control is 4-bromo-2-methyl-2-pentene.
- d) The 1,2-adduct is the kinetic product and the 1,4-adduct is the thermodynamic product.
- e) There is no thermodynamic or kinetic control in this reaction.

28. (4 pts) On reaction with acid, 4-pyrone is protonated to give a very stable cationic product. Which of the following structures shows the protonation site in that product?

Total Strain Energies in Cycloalkanes								
ring size kJ/mol kcal/mo								
3	115	27.6						
4	110	26.4						
5	27	6.5						
6	0	0						
7	26	6.3						
8	40	8.6						

Energy Costs for Interactions in Alkane Conformers

Interaction	kJ/mole	kcal/mole
H-H eclipsed	4.0	1.0
H-CH₃ eclipsed	6.0	1.4
CH ₃ -CH ₃ eclipsed	11.0	2.6
CH₃-CH₃ gauche	3.8	0.9

Steric Strain Due to 1,3-Diaxial Interactions

	n of one H–Y iaxial interaction	<u>1</u>	$H \longleftrightarrow Y$
Y	(kcal/mol)	(kJ/mol)	
- F	0.12	0.5	
—Cl	0.25	1.0	
—Br	0.25	1.0	
— он	0.5	2.1	
$-CH_3$	0.9	3.8	
$-CH_2CH_3$	0.95	4.0	
$-CH(CH_3)_2$	1.1	4.6	
-C(CH ₃) ₃	2.7	11.3	
$-C_6H_5$	1.5	6.3	
-соон	0.7	2.9	
—cn	0.1	0.4	

MAIN GI	ROUPS													MAIN G	ROUPS		
1A																	8A
1																	18
1	02/200											-	X 2/2/3	200			2
H	2A											3A	4A	5A	6A	7.A	He
1.008	2	40										13	14	15	16	17	4.003
3	4				_							5	6	7.	8	9	10
Li	Be				3.	RANSIIIL	N MET AL	S				В	C	N	0	F	Ne
6.941	9.012											10.811	12.011	14.007	15.999	18.998	20.180
11	12	20			00	70	00	0.0	00	40	20	13	14	15	16	17	18
Na	Mg	3B	4B	5B	6B	7B 7	8B	8B	8B	1B	2B	Al	Si	P	S	CI	Ar
22.990	24.305	3	4	5	6	100	8	9	10	11	12	26.982	28.086	30.974	32.068	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ті	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51,996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74,992	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468	87.62	88.906	91.224	92,906	95.94	[98]	101.07	102.90	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	П	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt									l
[223]	[226]	[227]	[261]	[262]	[266]	[264]	265	[268]	269]	[272]	[277]		[285]		[289]		[293]
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
	* L/	ANTHANO	IDS	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				140.12	140.91	14424	[145]	150.36	151,96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
	**	ACTINOI	DS	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				232.04	321.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]

Compound type	Compound	pK,	
Carboxylic acid	CH _s COOH	5	
1,3-Diketone	CH ₂ (COCH ₃) ₂	9	
1,3-Keto ester	CH ₈ COCH ₂ CO ₂ C ₂ H ₅	11	
1,3-Dinitrile	$\mathrm{CH_2}(\mathrm{CN})_2$	11	
1,3-Diester	$\mathrm{CH_2}(\mathrm{CO_2C_2H_6})_2$	13	
Water	НОН	16	
Primary alcohol	$\mathrm{CH_{2}CH_{2}OH}$	16	
Acid chloride	CH ₃ COCl	16	
Aldehyde	CH ₈ CHO	17	
Ketone	CH3COCH3	19	
Ester	$\mathrm{CH_{3}CO_{2}C_{2}H_{5}}$	25	
Nitrile	CH ₃ CN	25	
Dialkylamide	CH ₃ CON(CH ₃) ₂	30	
Ammonia	NII ₃	35	
Dialkylamine	$\mathrm{HN}(i\text{-}\mathrm{C_3H_7})_2$	40	
Alkyne	HC≡CH	25	
Alkene	$CH_2 = CH_2$	49	
Alkane	CH ₂ CH ₃	60	

Selectivity of halogen radicals (per H)

	3°	2°	1°
F·	2	1	1
Cŀ	5	3.5	1
Br∙	1600	80	1
I.	97000	1100	1

TABLE 5.4 Bond Dissociation Energy Data for the Reaction A-B -> A+ B+

Bond	ΔH° (kcal/mol)	Bond	ΔH° (kcal/mol)	Bond	ΔH° (kcal/mol)
н—н	104	(CH ₃) ₃ C—I	50	CH ₃ —CH ₃	88
H F	136	H ₂ C=CH-H	108	C ₂ H ₅ CH ₃	85
H—Cl	103	H ₂ C=CH-Cl	88	(CH ₃) ₂ CH— CH ₃	84
H-Br	88	H ₂ C=CHCH ₂ -H	87	(CH ₃) ₃ C—CH ₃	81
H-I	71	H ₂ C=CHCH ₂ -Cl	69	H ₂ C=CH-CH ₃	97
Cl—Cl	58			$H_2C = CHCH_2 - CH_3$	74
Br—Br	46	H	1116	CH ₃	
<u>ı—</u> I	36		112	C11.3	102
CH ₃ —H	104	CI			
CH ₃ —Cl	84		97	CH CH	{
CH ₃ —Br	70			CH ₂ -CH ₃	72
CH ₃ —I	56	CH ₂ —H			'
CH3—OH	91		85	o o	
$CH_3 - NH_2$	80			CH ₃ C—H	86
C2H5-H	_98_	CH ₂ —Cl		HO—H	119
C_2H_5 — $C1$	81		70	но-он	51
C_2H_5 —Br _	68			CH ₃ O—H	102
C_2H_5-1	53	Br		CH ₃ S—H	88
C_2H_5 — OH	91		82	C ₂ H ₅ O—H	103
$(CH_3)_2CH$ — H	95			0	
(CH ₃) ₂ CH— Cl	80	OH	120	CH ₃ C — CH ₃	77
$(CH_3)_2CH$ — Br	68		112	CH ₃ CH ₂ O — CH ₃	81
(CH ₃) ₃ C H	91	HC≕C—H	125	NH ₂ —H	103
(CH ₃) ₃ C— CI	79	HC≡CH	210	H-CN	130
$(CH_3)_3C - Br$	65	$H_2C = CH_2$	150		