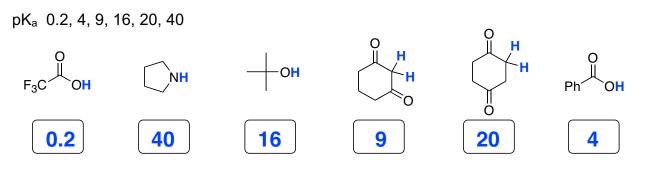
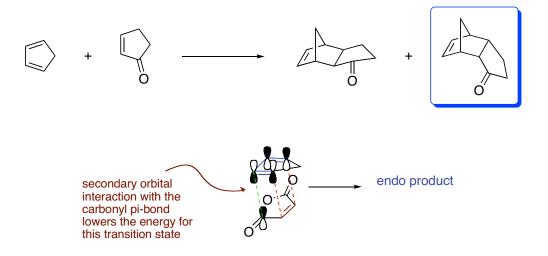


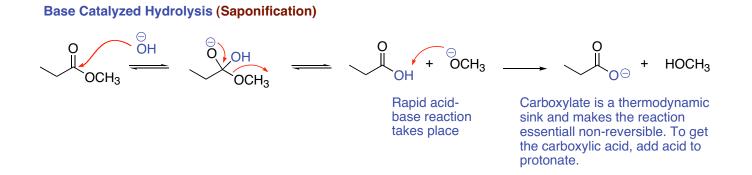
KEY

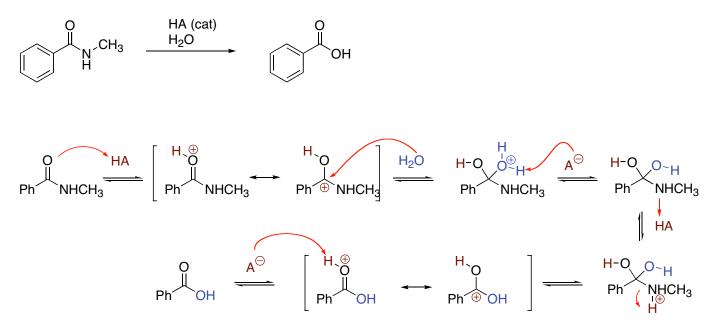


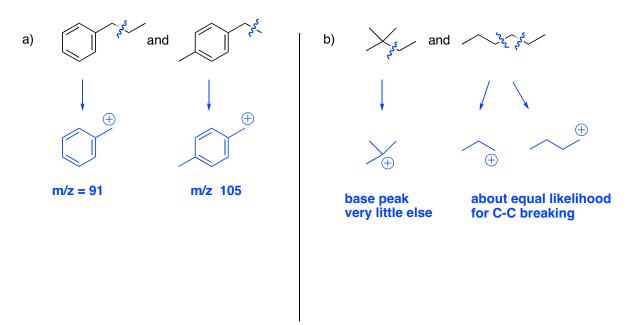
Please read through each problem carefully. Enter your answers in the spaces provided.

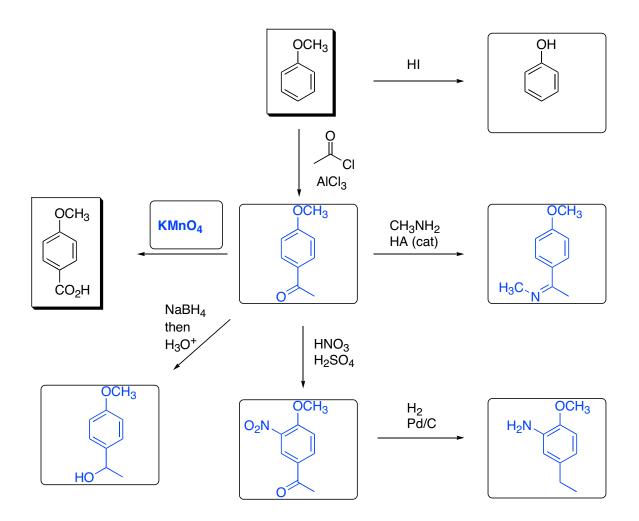

Problem 1 12 pts	RELAX! Think about what you		
Problem 2 8 pts	know.		
Problem 3 8 pts	Try to answer the questions you know and can do quickly first. Then go back and tackle the		
Problem 4 24 pts	problems you find more challenging.		
Problem 5 12 pts	In the multiple step reaction sequences, look what kind of reaction takes place in the secor		
Problem 6 21 pts	step to give you clues on what functional group you need to have after the first step.		
Problem 7 12 pts	In synthesis problems, try to work the synthesis		
Problem 8 34 pts	forwards AND backwards.		
Problem 9 24 pts			
Problem 10 20 pts			
Problem 11 25 pts			

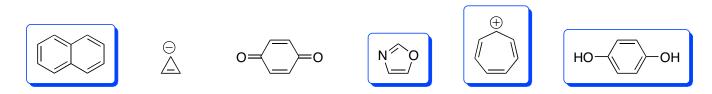
TOTAL

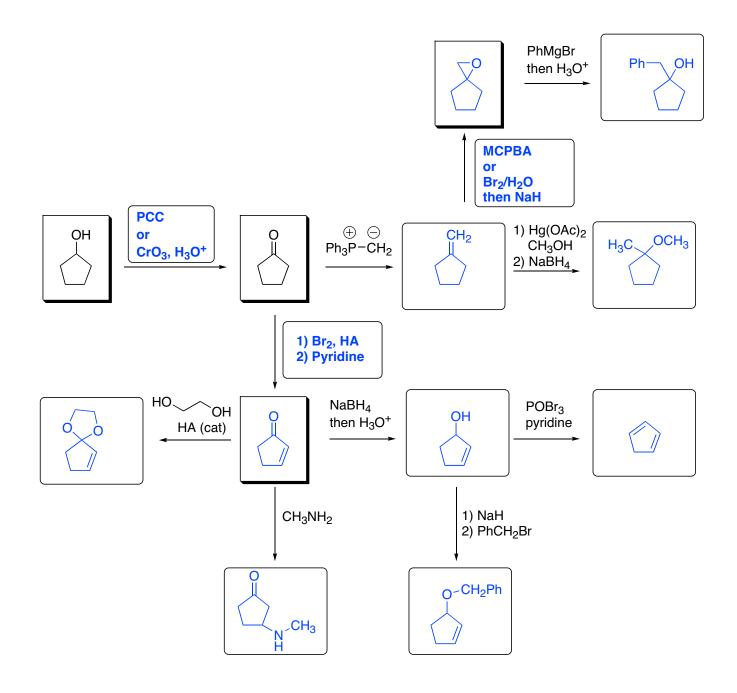

1. The following molecules all have some relatively acid proton. Match the pK_a 's that are listed below with the appropriate molecule by writing the pK_a in the boxes. (12 pts)

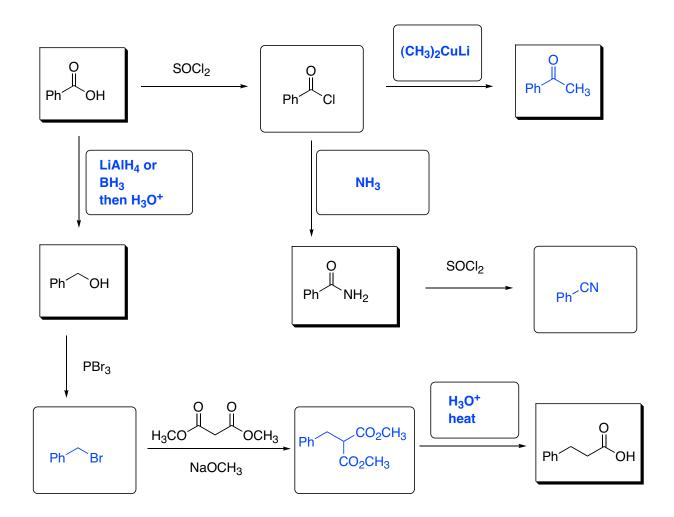

2. In the following Diels Alder reaction, there are two products possible. Circle the major product and briefly explain why it is formed in a larger amount. (8 pts)

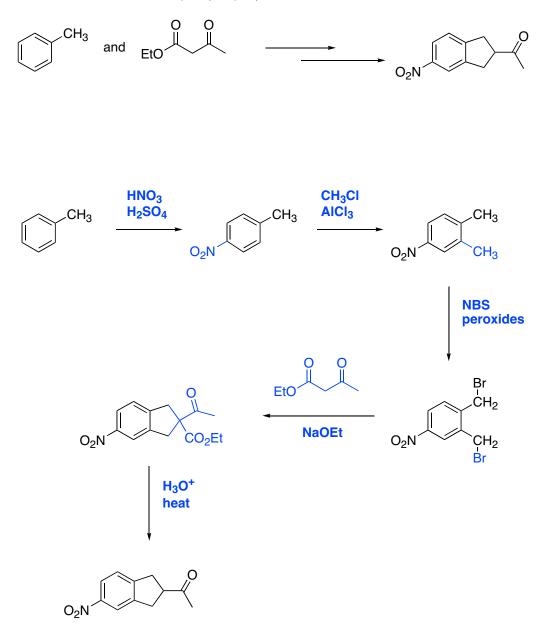

3. Explain why base catalyzed hydrolysis of esters (saponification) is better than acid catalyzed hydrolysis. (8 pts)

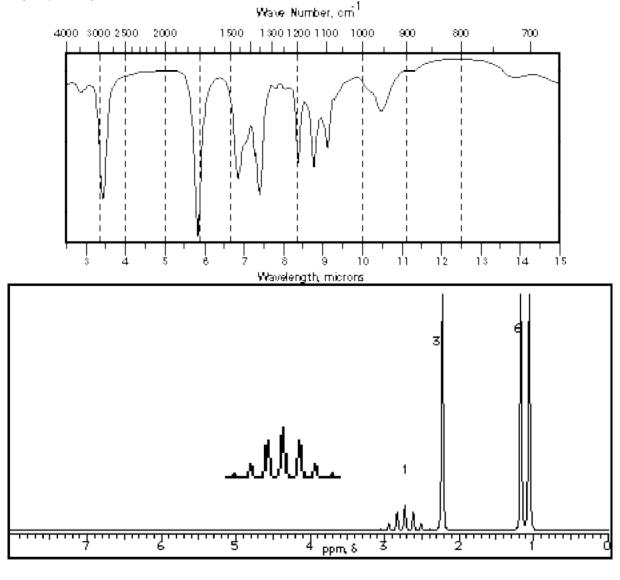

4. Write the complete mechanism for the acid catalyzed hydrolysis of *N*-methylbenzamide showing all intermediates (with appropriate resonance structures) and reaction arrows. (24 pts)


5. For each pair of molecules below, describe how the Mass Spectrum could be used to tell them apart. (12 pts)


6. Provide the major product or reagent for the reactions below. For ortho-para directors you need only show the para product. (21 pts)

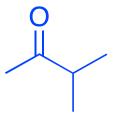

7. Indicate which of the following molecules are aromatic by circling them. (12 pts)


8. Provide the missing major products or reagents for the following. (34 pts)


9. Provide the missing major products or reagents for the following. (24 pts)

10. Show how you would synthesize the following starting from toluene and the ketoester shown below. Hint: This can be done in 5 steps. (20 pts)

11. Answer the following questions about an unknown molecule with a molecular formula of C₅H₁₀O. The IR and ¹H NMR are shown below. The ¹³C NMR shows resonances at 210, 45, 22, and 16 ppm. (25 points)


How many degrees of unsaturation does the molecule possess?

What type of functional group does the carbon resonance at 210 ppm represent?

KETONE

What is the structure of the unknown molecule?

initiated Stretching Absorptions							
Functional Group	Waven Range		Absorption Strength		notes		
н	2850)-2960	medium-stror	ng	below 3000		
_с-н	3020)-3100	medium		above 3000		
≡с-н	33	00	strong		above 3000		
0-Н	3400)-3650	broad-stronç	9			
N-H	3300)-3500	medium		#H's = #peaks		
—C≣C— —C≣N O=C=O	} 2100)-2260	medium				
C=0	1680)-1750	strong				
C=C	1640)-1750	medium				
C-C	800-	-1300	medium				
C-0	1050)-1150	medium				
C-X	<1000		strong				
Alkene out o	f plane bend	ling					
H H C=C R H	910 and 990	strong	H H C=C R R	700	strong		
R H C=C R H	890	strong	R H C=C R R	815	strong		
H C=C R H	970	strong					

Infrared Stretching Absorptions

Typical NMR Chemical Shifts							
Functional Group	Туре	¹ H Chemical Shift (ppm)	¹³ C Chemical Shift (ppm)				
—С-н 	Alkane	0.7 -1.8	10 - 60				
=с-с-н	Allylic or next to carbonyl	1.6 - 2.4	30 - 60				
Х-С-Н 	next to halogen or alcohol	2.5 - 4.0	20 - 85				
О С—О-С-Н 	next to oxygen of an ester	4.0 - 5.0	50 - 85				
= -н	vinylic	4.5 - 6.5	110 - 150				
C ^{-H}	aromatic	6.5 - 8.0	110 - 140				
О 	aldehyde	9.7 - 10.0	190 - 220				
0-Н	alcohol	varies widely will exchange with D ₂ O	N/A				
o c-x	carbonyl of ester, amide, or carboxylic acid (X = O, N)	N/A	165 - 185				
0 	carbonyl of ketone or aldehyde	N/A	190 - 220				