

Final Exam 12 December 2006

NAME_____

Please read through each question carefully and answer in the spaces provided.

A good strategy is to go through the test and answer all the questions you can do easily. Then go back and tackle the more difficult problems.

Please make sure your structures are drawn clearly and indicate any necessary stereochemistry with bold or dashed bonds.

Finally, think about what you know. Reason and common sense can often help you out.

You may use the back of the pages for scratch paper.

Problem 1	12 pts	 Problem 9	9 pts	
Problem 2	12 pts	 Problem 10	9 pts	
Problem 3	12 pts	 Problem 11	33 pts	
Problem 4	12 pts	 Problem 12	12 pts	
Problem 5	12 pts	 Problem 13	12 pts	
Problem 6	8 pts	 Problem 14	28 pts	
Problem 7	21 pts	 BONUS	15 pts	
Problem 8	8 pts			
		TOTAL	200 pts	

1. Fill in the missing groups on the front carbon in the Newman projections for the conformers of butane. (12 pts)

- 2. Draw a structure corresponding to each of the following names. (12 pts)
 - a) *E-*3-methyl-1,3-heptadien-5-yne

c) S-cis-4-chloro-2-pentene

3 For each of the following pairs of conformers, circle the one that would be LEAST stable (higher energy). (12 pts)

b)

4. For each molecule below, indicate how many different resonances you would observe in the proton and carbon NMR. (12 pts)

5. For each reaction below, place a check box that corresponds to the type of reaction. (12 pts)

6. The chlorides shown belown can elminate in more than one way. Each isomer provides a different product upon treatment with KOH. Draw the major product for each. (8 pts)

7. Provide the missing major organic product, the starting organic reactant, or the reagents for the following reactions. Be sure to indicate any stereochemistry clearly. (21 points)

8. The following energy diagram illustrates two reaction pathways starting from the same fictitous starting material **1**. On the diagram show the activation energies for each with an arrow. (8 pts)

9. For each molecule below, circle the m/z you would expect to see for a significant fragment peak (perhaps the base peak) in the mass spectrum. (mass of C=12, H=1) (9 pts)

10. For each of the molecules below, circle the IR stretching frequency you would expect to observe for that molecule. Do not circle more than one answer in each case. (9 pts)

11. Provide the major organic product for the following reactions showing any stereochemistry clearly if necessary. (33 pts)

 Shown below are the ¹H NMR spectra for three different compounds. These spectra corresond to three of the five compounds that are drawn for you A-E. Match the correct structure to the correct NMR spectra. (12 pts)

 Shown below are the ¹³C NMR spectra for three different compounds. These spectra corresond to three of the five compounds that are drawn for you A-E. Match the correct structure to the correct NMR spectra. (12 pts)

14. The proton NMR and IR spectra for an unknown compound with the molecular formula C₄H₁₀O are shown below. Answer the following questions about this spectra. (28 pts)

BONUS PROBLEMS (5 points each) ©

1. On the first day of class this year I discussed the reaction shown in the stamp on the front page of this exam. Briefly describe the significance of Wöhler's work.

- 2. Draw the structure for Sucralose (aka Splenda).
- 3) Androstenedione belongs to what class of compounds? What is it's biological role?

Infrared Stretching Absorptions

Functional Group	Wavenumber Range (cm ⁻¹)	Absorption Strength	notes
—с-н	2850-2960	medium-strong	below 3000
 =С-н	3020-3100	medium	above 3000
≡C-H	3300	strong	above 3000
0-Н	3400-3650	broad-strong	
C≡C C≡N	2100-2260	medium	
C=0	1680-1750	strong	

Typical NMR Chemical Shifts

Functional Group	Туре	¹ H Chemical Shift (ppm)	¹³ C Chemical Shift (ppm)					
— <mark>С</mark> -Н	Alkane	0.7 -1.8	10 - 60					
=C- <mark>C</mark> -H	Allylic or next to carbonyl	1.6 - 2.4	30 - 60					
Х- <mark>С</mark> -Н	next to halogen or alcohol	2.5 - 4.0	20 - 85					
о С–о- <mark>С</mark> -Н	next to oxygen of an ester	4.0 - 5.0	50 - 85					
= <mark> </mark> =с-н	vinylic	4.5 - 6.5	110 - 150					
≡С-Н	acetylenic	2.0-2.5	65 - 90					
C ^H	aromatic	6.5 - 8.0	110 - 140					
о — <mark>С</mark> -Н	aldehyde	9.7 - 10.0	190 - 220					
0-H	alcohol	varies widely will exchange with D_2O	N/A					
0 ⊂-x	ester, amide, or carboxylic acid (X = O, N)	N/A	165 - 185					
0 <mark>C</mark>	carbonyl of ketone or aldehyde	N/A	190 - 220					

																			S - 20	_					
2 Heium 4.003	10	Ne	Neon 20.1797	18	\mathbf{Ar}	Argon 39.948	36	Kr	Krypton 83.80	54	Xe	Xenon 131.29	98	Rn	Radon (222)					12	Lu	Lutetium 174.967	103	Lr	Lawrencium (262)
	9	H	Fluorine 18.9984032	17	CI	Chlorine 35.4527	35	Br	Bromine 79.904	53	Ι	126.90447	85	At	Astatine (210)					02	Yb	Ytterbium 173.04	102	No	Nobelium (259)
	8	0	Oxygen 15.9994	16	S	Sulfur 32.066	34	Se	Selenium 78.96	52	Te	Tellurium 127.60	84	P_0	Polonium (209)					69	Tm	Thulium 168.93421	101	Md	Mendelevium (258)
	7	Z	Nitrogen 14.00674	15	Ρ	Phosphorus 30.973761	33	AS	Arsenic 74.92160	51	\mathbf{Sb}	Antimony 121.760	83	Bi	Bismuth 208.98038					89	Er	Erbium 167.26	100	Fm	Fermium (257)
	9	C	Carbon 12.0107	14	Si	Silicon 28.0855	32	Ge	Germanium 72.61	50	Sn	Tin 118.710	82	$\mathbf{P}\mathbf{b}$	Lead 207.2	114				29	Ho	Holmium 164.93032	66	Es	Einsteinium (252)
	5	B	Boron 10.811	13	AI	Aluminum 26.981538	31	Ga	Gallium 69.723	49	In	Indium 114.818	81	IT	Thallium 204.3833	113				99	Dy	Dysprosium 162.50	98	Cf	Californium (251)
							30	Zn	Zine 65.39	48	Cd	Cadmium 112.411	80	Hg	Mercury 200.59	112		(277)		65	$\mathbf{T}\mathbf{b}$	Terbium 158.92534	76	Bk	Berkelium (247)
							29	Cu	Copper 63.546	47	\mathbf{Ag}	Silver 107.8682	62	Au	Gold 196.96655	111		(272)		64	Gd	Gadolinium 157.25	96	Cm	Curium (247)
							28	ïZ	Nickel 58.6934	46	Pd	Palladium 106.42	78	Pt	Platinum 195.078	110		(269)		63	Eu	Europium 151.964	95	Am	Americium (243)
							27	C_0	Cobalt 58.933200	45	Rh	Rhodium 102.90550	77	Ir	Iridium 192.217	109	Mt	Meitnerium (266)		62	Sm	Samarium 150.36	94	Pu	Plutonium (244)
							26	Fe	Iron 55.845	44	Ru	Ruthenium 101.07	76	Os	Osmium 190.23	108	Hs	Hassium (265)	9 8 8	61	Pm	Promethium (145)	93	Np	Neptunium (237)
							25	Mn	Manganese 54.938049	43	Tc	Technetium (98)	75	Re	Rhenium 186.207	107	Bh	Bohrium (262)		60	Νd	Neodymium 144.24	92	U	Uranium 238.0289
							24	Cr	Chromium 51.9961	42	Mo	Molybdenum 95.94	<i>44</i>	W	Tungsten 183.84	106	\mathbf{Sg}	Seaborgium (263)	100	65	\mathbf{Pr}	Praseodymium 140.90765	16	Pa	Protactinium 231.03588
							23	Λ	Vanadium 50.9415	41	qN	Niobium 92.90638	52	Та	Tantalum 180.9479	105	Db	Dubnium (262)		85	Ce	Cerium 140.116	06	Τh	Thorium 232.0381
							22	Τi	Titanium 47.867	40	Zr	Zirconium 91.224	72	Ηf	Hafnium 178.49	104	Rf	Rutherfordium (261)							
	-						21	Sc	Scandium 44.955910	39	Υ	Yttrium 88.90585	27	La	Lanthanum 138.9055	68	Ac	Actinium (227)							
	4	Be	Beryllium 9.012182	12	Mg	Magnesium 24.3050	20	Ca	Calcium 40.078	38	Sr	Strontium 87.62	56	Ba	Barium 137.327	88	Ra	Radium (226)							
Hydrogen 1.00794	3	Li	Lithium 6.941	11	Na	Sodium 22.989770	19	K	Potassium 39.0983	37	Rb	Rubidium 85.4678	55	Cs	Cesium 132.90545	87	Fr	Francium (223)							

The Periodic Table of the Elements