

Exam o₃

"In this laboratory we're always pushing the envelope to the Max."

Please read through each question carefully and answer in the spaces provided.

A good strategy is to go through the test and answer all the questions you can do easily. Then go back and tackle the more difficult problems.

Please make sure your structures are drawn clearly and indicate any necessary stereochemistry with bold or dashed bonds.

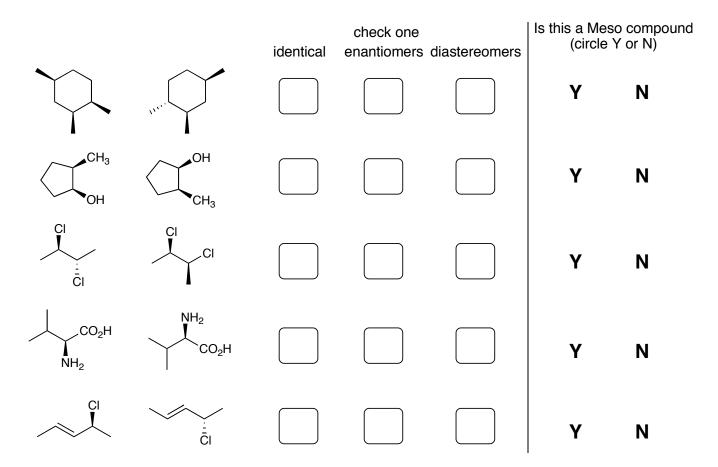
Finally, think about what you know. Reason and common sense can often help you out.

You may use the back of the pages for scratch paper.

Problem 1	12 pts	-	Problem 6	10 pts	
Problem 2	8 pts	·	Problem 7	25 pts	
Problem 3	6 pts		Problem 8	24 pts	
Problem 4	6 pts		BONUS	5 pts	
Problem 5	15 pts		TOTAL	100 nts	

1) The anti-HIV drug shown below has 6 stereogenic carbons. In the boxes provided, indicate the configuration using the R or S designation. (12 pts)

- 2) Draw the correct structure for the following. (8 pts)
 - a) (1*S*,3*R*)-1,3-dimethylcyclohexane


- b) (S)-2-chloro-5-methyl-3-hexyne
- 3) For each pair of molecules below, circle the one that would be the best substrate for a S_N2 substitution reaction. (6 pts)

a)
$$OCH_3$$
 or $OTos$

4)	or each pair of molecules below, circle the one that would be the best substrate for an E
	eliminiation reaction (6 pts)

a)
$$OTos$$
 or $OTos$ b) $OTos$ c) $OTos$ or $OTos$ or $OTos$ OTo

5) For the following pairs of molecules, check the appropriate box that describes their relationship. Indicate whether or not it is a meso compound. (15 pts)

- 6) Circle True or False for the following statements about substitutions and eliminations. (4 pts)
 - a) S_N2 substitution can take place readily on 3° substrates.
 - b) E1 elimination competes with SN1 substitution.
 - c) S_N1 substitution requires a strong nucleophile.
 - d) E2 elimination can take place readily on 3° substrates.

7) Provide the major organic product for the following reactions. Show any stereochemistry clearly with bold wedges or dashed bonds. (25 pts)

a)		1) NaNH ₂	
b)	OH	1) TosCl, Et ₃ N 2) NaSH DMF	
c)	OH	1) PBr ₃ 2) NaSH DMF	
d)	OH	1) PBr ₃ 2) NaOEt EtOH	
e)		Li in NH ₃ →	
f)		KMnO ₄ ——➤ (2 organic products)	
g)		H ₂ , Pd/C	

8) For the following multistep syntheses, fill in the missing products and reagents. (24 pts)

BONUS: Who won the Nobel Prize in Chemistry this year and what was the enzyme he was working on? (5 pts)

The Periodic Table of the Elements

2 He Helium 4.003	10	Ne	Neon 0.1797	18	Ar	Argon 39.948	36	Kr	Krypton 83.80	54	Xe	Xenon 131.29	98	Rn	Radon (222)			
	_		Fluorine 18.9984032	_		- 18			Bromine 79.904	\vdash	Ι	lodine 126.90447	2		- 8			3
			- 4	\vdash					Selenium 78.96		Te	363703			Polonium (209)			
	7			-					Arsenic 74.92160						Bismuth 208.98038			
			Carbon 12.0107			Silicon 28.0855 3			Germanium 72.61							114		
	5	В	Boron 10.811	<u> </u>		Aluminum 26.981538	_		100	\vdash	II	00	81	Ξ	Thallium 204.3833	113		
									Zinc 65.39	48	Cd	Cadmium 112.411	80	Hg	Mercury 200.59	112		(277)
							59	Cn	Copper 63.546	47	Ag	Silver 107.8682	62	Au	Gold 196.96655	1111		(272)
							28	Z	Nickel 58.6934	46	Pd	Palladium 106.42	78	Pt	Platinum 195.078	110		(569)
							27	ပိ	Cobalt 58.933200	45	Rh	Rhodium 102.90550	11	Ir	Iridium 192.217	109	Mt	Meitnerium (266)
							26	Fe	Iron 55.845	44	Ru	Ruthenium 101.07	92	S	Osmium 190.23	108	Hs	Hassium (265)
							25	Mn	Manganese 54.938049	43	Tc	Technetium (98)	52	Re	Rhenium 186.207	107		
							24	Cr	Chromium 51.9961	42	M_0	Molybdenum 95.94	74	*	Tungsten 183.84	901	Sg	Seaborgium (263)
							23	>	Vanadium 50.9415	41	Sp	Niobium 92.90638	73	Та	Tantalum 180.9479	105	Dp	Dubnium (262)
							22	Ξ	Titanium 47.867	40	Zr	Zirconium 91.224	72	Hf	Hafnium 178.49	104	Rf	Rutherfordium (261)
							21	Sc	Scandium 44.955910	39	Y	Yttrium 88.90585	27	La	Lanthanum 138,9055	68		Actinium (227)
	4	Be	Beryllium 9.012182	12		Magnesium 24.3050	20				\mathbf{Sr}	Strontium 87.62	99	Ba	83755		Ra	Radium (226)
1 H Hydrogen 1.00794	3	Li	Lithium 6.941	11	Na	Sodium 22.989770	19	X	Potassium 39.0983	37	Rb	Rubidium 85.4678	55	S	Cesium 132.90545	87	Fr	Francium (223)

3							\neg
71	Lu	Lutetium	174.967	103	Lr	Lawrencium	(262)
70	$\mathbf{A}\mathbf{p}$	Ytterbium	173.04	102	N _o	Nobelium	(259)
69	Tm	Thulium	168.93421	101	Md	Mendelevium	(258)
89	Er	Erbium	167.26	100	Fm	Fermium	(257)
<i>L</i> 9	\mathbf{H}_0	Holmium	164.93032	66	Es	Einsteinium	(252)
99	Dy	Dysprosium	162.50	86	Cť	Californium	(251)
99	$\mathbf{T}\mathbf{b}$	Terbium	158.92534	26	Bk	Berkelium	(247)
64	Вd	Gadolinium	157.25	96	Cm	Curium	(247)
63	Eu	Europium	151.964	98	Am	Americium	(243)
62	Sm	Samarium	150.36	94	Pu	Plutonium	(244)
61	Pm	Promethium	(145)	93	dN	Neptunium	(237)
09	PN	Neodymium	144.24	92	\mathbf{n}	Uranium	238.0289
69	Pr	Praseodymium	140.90765	91	Pa	Protactinium	231.03588
28	Ce	Cerium	140.116	06	Th	Thorium	232.0381