CHEM 2311 E5 practice-ii (answers provided)

COPIES OF TABLES 2.7, 9.1, and 9.2 are attached You may use a calculator on this exam

Atomic Masses: H, 1.008; C, 12.01; N, 14.007; O, 15.999

1. (3	• •		n the right which co or each question.	rresponds to the an	swer to each question.	There is
(i) What type of electromagnetic radiation is absorbed during the NMR experiment?						A B
A	. X-ray	B. microwave	C. ultraviolet	D. radio freque	ency	C D
(ii) In the ¹ H NMR spectrum of ethanol, the protons of the methyl group appears at δ = 1.2 ppm as a triplet. What principle allows you to predict that it would be a triplet?						Е
E.	integration	F. chemical	shift G. N + 1	rule H. sh	ielding	F G H
(iii) Predict the splitting pattern you would observe for the proton at C3 of 2,3-dimethyl-2-phenylbutane.?						
I.	singlet	J. sextet	K. quartet	L. septet		I J K
. ,	-	-	-dichlorobenzene giv	e?		Ĺ
IVI	.3 N	I. 4 O . 5	P. 6			М
0.	00 ppm. In t	the corresponding		2-dimethylpropane, th	Ided and appear at δ = ne methyl groups appear	N O P
				R. silicon is larger tha is no coupling of H to		Q
(vi) A C ₇ compound which gives 3 signals in the ¹³ C NMR spectrum could be:					R S T	
 U. 2-Methylhexane W. 3,3-Dimethylpentane W. 2,4-Dimethylpentane X. 2,2,3-Trimethylbutane 					•	
(vii) A	compound,	$C_5H_{11}CI$, which ex	hibits only two single	s in the ¹ H NMR spec	trum must be:	U V
Y.	. 1-Chloro-3	-methylbutane	Z. 3-Chloropenta ne BB. 1-Chloro-2-	ine		W X
(viii) Ir	n ¹³ C NMR s	spectroscopy, the s	ignal due to which ty	pe of carbon occurs fi	urthest downfield.	Y
	C. C-O			C=O		Z AA BB
						<u> </u>

CC DD EE

FF

- 2. (24 points)
 - (a) Provide a single structure consistent with the following data (there is a single correct answer for each part).

(i) Compound A: C₃H₆O which boils at 78 °C (the highest boiling C₃H₆O compound)

(ii) Compound **B**: C₃H₇Br ¹H NMR: a septet (1H) downfield from a doublet (6H)

(iii) Compound **C**: C₅H₁₂O ¹H NMR: two singlets

(iv) Compound **D**: C₈H₈Cl₂ ¹H NMR: two singlets

(b) Compound **E**, which contains only C, H, and O gives a combustion analysis of C55.82%; H 6.94%

(i) What is the *empirical formula* of **E**?

(ii) What is the smallest possible molecular formula for E?

3.	(19 points) Refer to the data provided on the next page.	NOTE: Parts (a)-(i) are worth TWO POINTS
	each, (j) is worth ONE POINT. Each part is graded ind	ependently, without reference to other
	answers	

Analysis of Combustion Analysis/Mass Spectrum/Empirical Formula

- (a) What is the molecular formula?
- (b) What is the value of SODAR?

Analysis of the ¹³C NMR spectrum:

(c) How many types of carbon are there in the molecule:

(d) Is a carbonyl present? (circle one) Yes No

(e) How many types of aromatic carbons are there?

Analysis of IR spectrum (in conjunction with formula and ¹³C NMR)

(f) Which of the following are present? (circle all that are present)

O-H C-O C=O

Analysis of ¹H NMR spectrum

(g) How many types of proton are there in the molecule?

(h) What is the ratio of the number of each type of proton? (*i.e.*, 6:3:2:1)_____

(i) How many aromatic hydrogens are there?

Putting it all together

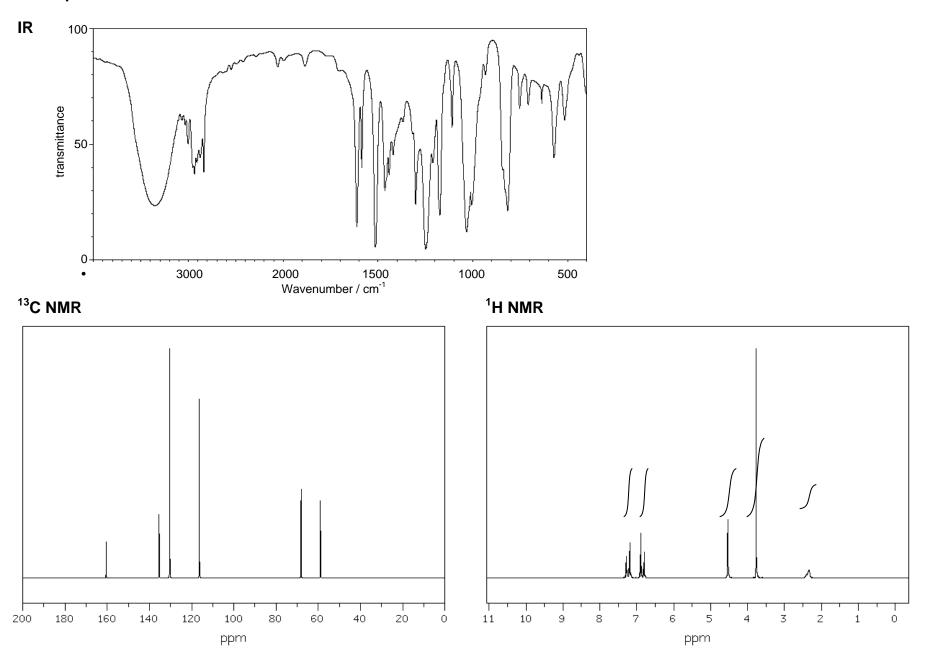
(j) Suggest a single structure for the molecule.

INFRARED ABSORPTION VALUES

INFRARED ABSORPTION VALUES					
Group	Frequency Range (cm ⁻¹)	Intensity			
A. Alkyl					
C-H (stretching)	2583-2962	(m-s)			
Isopropyl, $-CH(CH_3)_2$	1380-1385	(s)			
	and 1365-1370	(s)			
<i>tert</i> -butyl, $-C(CH_3)_3$	1385-1395	(m)			
	and ~1365	(s)			
B. Alkenyl	2010 2005	(
C-H (stretching) C=C (stretching	3010-3095 1620-1680	(m)			
R-CH=CH ₂	985-1000	(v) (s)			
R-C11-C112	and 905-920	(S) (S)			
$R_2C=CH_2$	880-900	(S)			
cis-RCH=CHR	675-730	(S)			
trans-RCH=CHR	960-975	(s)			
		(-)			
C. Alkynyl					
≡C-H (stretching)	~3300	(s)			
C≡C (stretching)	2100-2260	(v)			
D. Aromatic	2020				
Ar-H (stretching)	~3030	(v)			
Aromatic substitution type					
(C-H out-of-plane bendings) Monosubstituted	(00.710	(
Monosubstituted	690-710	(very s)			
o-Disubstituted	and 730-770 735-770	(very s) (s)			
<i>m</i> -disubstituted	680-725	(S) (S)			
<i>m</i> -disubstituted	and 750-810	(strong s)			
<i>p</i> -disubstituted	800-860	(strong s)			
F		(20101182)			
E. Alcohols, Phenols, and Carbo	oxylic Acids				
O-H (stretching)					
Alcohols, phenols (dilute solu		(sharp, v)			
Alcohols, phenols (hydrogen		(broad, v)			
Carboxylic acids (hydrogen b	onded) 2500-3000	(broad, v)			
F. Aldehydes, Ketones, Esters at C=O (stretching)	nd Carboxylic Acids 1630-1780				
Aldehydes	1690-1740	(s)			
Ketones	1680-1750	(S) (S)			
Esters	1735-1750	(S) (S)			
Carboxylic Acids	1710-1780	(S)			
Amides	1630-1690	(S)			
	1000 1000	(5)			
G. Amines					
N-H	2200-2500	(m)			
H. Nitriles					
C≡N	2220-2260	(m)			

s = strong; m = medium, w = weak, v = variable

APPROXIMATE PROTON CHEMICAL SHIFTS


Type of Proton	Chemical Shift (δ, ppm)
1° Alkyl, RC H ₃	0.8-1.0
2° Alkyl, RCH ₂ R	1.2-1.4
3° Alkyl, R ₃ C H	1.4-1.7
Allyllic, $R_2C=C-CH_3$	1.6-1.9
l R	
Ketone, RCC H ₃	2.1-2.6
0 Il	
Benzylic, $ArCH_3$	2.2-2.5
Acetylenic, RC≡CH	2.5-3.1
Alkyl iodide, RCH_2I	3.1-3.3
Ether, $ROCH_2R$	3.3-3.9
Alcohol, $HOCH_2R$	3.3-4.0
Alkyl bromide, RCH ₂ Br	3.4-3.6
Alkyl chloride, RCH_2Cl	3.6-3.8
Ainylic, $R_2C=CH_2$	4.6-5.0
Vinylic, $R_2C=CH$	5.2-5.7
l R	
Aromatic, Ar-H	6.0-9.5
Aldehyde, RCH	9.5-10.5
U U U	
Alcohol hydroxyl, ROH	0.5-6.0
Amino, RNH_2	1.0-5.0
Phenolic, ArOH	4.5-7.7
Carboxylic, RCOH	10-13
0	

APPROXIMATE CARBON-13 CHEMICAL SHIFTS

SHIFTS	
Type of Carbon	Chemical Shift (δ, ppm)
1° Alkyl, RCH ₃	0-40
2° Alkyl, RCH ₂ R	10-50
3° Alkyl, R ₃ CH	15-50
Alkyl halide or amine, C-X	10-65
Alcohol or ether, -C-O	50-90
Alkyne, , -C ≡	60-90
Alkene, -C=	100-170
Aryl,	100-170
Nitriles, -C≡N	120-130
O Il Amides, - C -N-	150-180
O ll Carboxylic acids , esters, - C -O-	160-185
O Il Aldehydes, ketones, -C-	182-215

E1 Practice-i, q3

Empirical Formula: C₄H₅O Mass Spec: M⁺ *m/e*= 138

