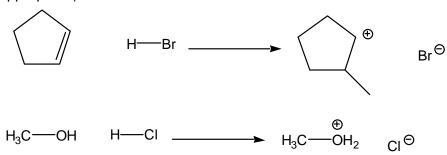
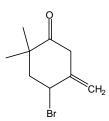

CHEM 2311

E3 practice-i (answered provided)

1.	(32 points) Circle the letter <i>on the right</i> which corresponds to the answer to each question. only one correct answer for each question.	There is
(i)	Which of the following statements is not true?	
	 A. The heterolysis of a bond between atoms which do not bear formal charges always produces a cation and an anion B. Carbocations are Lewis acids C. Carbon atoms of carbanions have a complete octet of valence shell electrons D. Nucleophiles seek centers of high electron density (e.g., a negative charge). 	A B C D
(ii)	What is the approximate equilibrium constant (K_{eq}) at 25 °C for a reaction with a ΔG ° value of +10 kcal/mole. [hmmmm, you do not need a calculator for this!!]	E F G H
	E. -1 F. 4×10^{-8} G. 1 H. 4×10^{8}	••
(iii)) Which of the following is the correct order of decreasing basicity (more basic > less basic)?	!
	I. $NH_3 > MeNH_2 > H_2O > HF$ J. $MeNH_2 > NH_3 > MeOH > CH_4$ K. $NH_3 > Me_3N > H_2O > MeOH$ L. $CH_3COONa > NaOH > NaOMe > NaNMe_2$	J K L
(iv)) Which of the following reactions corresponds to an addition reaction	
	M. 2° alkyl halide \rightarrow alkeneN. 3°alkyl halide \rightarrow 3° alcoholO. ketone \rightarrow 2° alcoholP. 2° alcohol \rightarrow alkene	M N O P
(v)	Which of the following is <i>not</i> a characteristic of S_N2 reactions?	
	 Q. rate is independent of the concentration of nucleophile R. chiral electrophiles undergo inversion S. alkyl fluorides are relatively unreactive T. iodide is a relatively good nucleophile 	Q R S T
(vi)) Which of the following is a characteristic of the reaction of 3° alkyl halides with water (hydrolysis)?	
	 U. chiral electrophiles undergo inversion W. the rate will be slower in a polar solvent V. alkyl fluorides are relatively unreactive X. the rate will be slower at higher temperatures 	U V W X
(vii	i) Which of the following is the strongest nucleophile?	
	Y. tert-butyl cation Z. water AA. Hydrogen sulphide, H ₂ S BB. ethylene	Y
(vii	ii) Which of the following is the strongest electrophile	AA BB
,	CC. tert-butyl cation DD. di-tert-butyl ether, (CH ₃) ₃ C-O-C(CH ₃) ₃	
	EE. ethylene FF. 2,3-dimethylbutane	CC DD EE


2.	(32 points). Give answers for each part of the question in the spaces provided.
	(a) Provide an energy – reaction coordinate diagram for the reaction of <i>tert</i> -butyl bromide with wate to give <i>tert</i> -butanol. The diagram should accurately reflect the relative energy of starting materials, intermediates products, and transition states. Draw the structures of the <i>two</i> intermediates in this reaction
	energy
	reaction coordinate
	(b) (i) Place curved arrows on the structures of the starting materials to account for the bonding changes in the following proposed reaction.
	+ HO [−] → ⁻:CH ₂ CH ₂ CH ₂ CH ₂ OH
	(ii) The reaction does not proceed. Provide two reasons to explain why the reaction does not proceed
	(c) Provide the major organic product expected from each of the following reactions. (CH ₃) ₃ C H So °C, acetone
	NaOMe CH₃CH₂CH₂CH So °C, MeOH →
Г	(d) Although it is a tertiary alkyl bromide, 1-bromobicyclo[2.1.1]hexane is unreactive in S _N 1 reactions. Explain.
	Br

- 3. (32 points). Give answers for each part of the question in the spaces provided.
 - (a) Explain, with the aid of <u>structures</u> and a <u>sentence</u> (or two), why compound **A** is a stronger acid than a simple diol.


(b) Show curved arrows to account for the changes in bonding which take place in each of the following elementary reaction steps (note: you will need to add lone pairs to the structures as appropriate).

(c) Draw the chemical equation which represents the acid-base reaction involved when each of the following are mixed. Indicate whether K>1 or K<1.

(i) aqueous NaOH + CH₃COOH

- (d) With reference to structure, explain why the acetylide anion, HC≡C: is a weaker base than the ethyl anion, CH₃CH₂:
- (e) Circle all of the electrophilic atoms in the following molecule.

